Main Profile

At A Glance

Mars Science Laboratory

http://www.FreeScienceLectures.com Building on the success of the two rover geologists that arrived at Mars in January, 2004, NASA's next rover mission is being planned for travel to Mars before the end of the decade. Twice as long and three times as heavy as the Mars Exploration Rovers Spirit and Opportunity, the Mars Science Laboratory will collect Martian soil and rock samples and analyze them for organic compounds and environmental conditions that could have supported microbial life now or in the past. The mission is anticipated to have a truly international flavor, with a neutron-based hydrogen detector for locating water provided by the Russian Federal Space Agency, a meteorological package provided by the Spanish Ministry of Education and Science, and a spectrometer provided by the Canadian Space Agency. Mars Science Laboratory is intended to be the first planetary mission to use precision landing techniques, steering itself toward the Martian surface similar to the way the space shuttle controls its entry through the Earth's upper atmosphere. In this way, the spacecraft will fly to a desired location above the surface of Mars before deploying its parachute for the final landing. As currently envisioned, in the final minutes before touchdown, the spacecraft will activate its parachute and retro rockets before lowering the rover package to the surface on a tether (similar to the way a skycrane helicopter moves a large object). This landing method will enable the rover to land in an area 20 to 40 kilometers (12 to 24 miles) long, about the size of a small crater or wide canyon and three to five times smaller than previous landing zones on Mars. Like the twin rovers now on the surface of Mars, Mars Science Laboratory will have six wheels and cameras mounted on a mast. Unlike the twin rovers, it will carry a laser for vaporizing a thin layer from the surface of a rock and analyzing the elemental composition of the underlying materials. It will be able to collect rock and soil samples and distribute them to on-board test chambers for chemical analysis. Its design includes a suite of scientific instruments for identifying organic compounds such as proteins, amino acids, and other acids and bases that attach themselves to carbon backbones and are essential to life as we know it. It can also identify features such as atmospheric gases that may be associated with biological activity. Using these tools, Mars Science Laboratory will examine Martian rocks and soils in greater detail than ever before to determine the geologic processes that formed them; study the martian atmosphere; and determine the distribution and circulation of water and carbon dioxide, whether frozen, liquid, or gaseous. NASA plans to select a landing site on the basis of highly detailed images sent to Earth by the Mars Reconnaissance Orbiter, in addition to data from earlier missions. The rover will carry a radioisotope power system that generates electricity from the heat of plutonium's radioactive decay. This power source gives the mission an operating lifespan on Mars' surface of a full martian year (687 Earth days) or more while also providing significantly greater mobility and operational flexibility, enhanced science payload capability, and exploration of a much larger range of latitudes and altitudes than was possible on previous missions to Mars. Planned Launch: Fall, 2009 Arrival: October, 2010 --- It's Never too Late to Study: http://www.FreeScienceLectures.com --- Notice: This video is copyright by its respectful owners. The website address on the video does not mean anything. ---
Length: 02:03

Contact

Questions about Mars Science Laboratory

Want more info about Mars Science Laboratory? Get free advice from education experts and Noodle community members.

  • Answer

Ask a New Question