Main Profile

At A Glance

Photoelectric Effect and Photoelectric Cell

Check us out at The photoelectric effect is a phenomenon in which electrons are emitted from matter (metals and non-metallic solids, liquids or gases) as a consequence of their absorption of energy from electromagnetic radiation of very short wavelength, such as visible or ultraviolet light. Electrons emitted in this manner may be referred to as "photoelectrons".As it was first observed by Heinrich Hertz in 1887, the phenomenon is also known as the "Hertz effect", although the latter term has fallen out of general use. Hertz observed and then showed that electrodes illuminated with ultraviolet light create electric sparks more easily. The photoelectric effect takes place with photons with energies from about a few electronvolts to, in high atomic number elements, over 1 MeV. At the high photon energies comparable to the electron rest energy of 511 keV, Compton scattering, another process, may take place, and above twice this (1.022 MeV) pair production may take place. Study of the photoelectric effect led to important steps in understanding the quantum nature of light and electrons and influenced the formation of the concept of waveparticle duality. The term may also, but incorrectly, refer to related phenomena such as the photoconductive effect (also known as photoconductivity or photoresistivitity), the photovoltaic effect, or the photoelectrochemical effect which are, in fact, distinctly different. Photoelectric Cell : During the latter half of the nineteenth century many scientists and engineers were simultaneously observing a strange phenomenon: electrical devices constructed from certain metals seemed to conduct electricity more efficiently in the daytime than at night. This phenomenon, called the photoelectric effect, had been noted years earlier by the French physicist A. E. Becquerel (1820-1891), who had invented a very primitive device for measuring the intensity of light by measuring the electrical current produced by photochemical reactions. It was becoming evident that one metal in particular—selenium—was far more reactive when exposed to light than any other substance. Using selenium as a base, several scientists set out to develop a practical device for measuring light intensity. A number of them succeeded. In 1883 the American inventor Charles Fritts created a working photoelectric cell; that same year a German engineer, Paul Nipkow, used a photoelectric cell in his "Nipkow's disk"—a device which could take a picture by measuring the lighter and darker areas on an object and translate them into electrical impulses. The precursor to the modern photoelectric cell was invented by the German physicists Hans Geitel (1855-1923) and Julius Elster (1859-1920) by modifying a cathode-ray tube. Strangely, the explanation for why selenium and other metals produced electrical current did not come until 1902, when Phillip Lenard showed that radiation within the visible spectrum caused these metals to release electrons. This was not particularly surprising, since it had been known that both longer radio waves and shorter x rays affected electrons. In 1905 Albert Einstein (1879-1955) applied the quantum theory to show that the current produced in photoelectric cells depended upon the intensity of light, not the wavelength; this proved the cell to be an ideal tool for measuring light.
Length: 04:23


Questions about Photoelectric Effect and Photoelectric Cell

Want more info about Photoelectric Effect and Photoelectric Cell? Get free advice from education experts and Noodle community members.

  • Answer