### Section Formula

Check us out at http://www.tutorvista.com//videos Given two end points of line segment A(x1, y1) and B (x2, y2) you can determine the coordinates of the point P(x, y) that divides the given line segment in the ratio m:n using Section Formula given by . The midpoint of a line segment divides it into two equal parts or in the ratio 1:1. The midpoint of line segment joining the points (x1, y1) and (x2, y2) is . The line joining the vertex to the midpoint of opposite side of a triangle is called Median. Three medians can be drawn to a triangle and the point of concurrency of medians of a triangle is called Centroid denoted with G. If A(x1, y1), B(x2, y2) and C(x3, y3) are vertices of a triangle then its centroid G is given by . The centroid of a triangle divides the median in the ratio 2:1

Length:
03:21