Main Profile

At A Glance

Electrical, Optical & Magnetic Materials and Devices

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical ...

Start Date: Sep 01, 2006
Cost: Free

Contact

Electrical, Optical & Magnetic Materials and Devices's Full Profile

Overview

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Details

  • Dates: Sep 01, 2006 to Dec 20, 2006
  • Days of the Week: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
  • Level of Difficulty: Beginner
  • Size: Massive Open Online Course
  • Instructor: Prof. Caroline Ross
  • Cost: Free
  • Institution: MIT OCW

Provider Overview

About MIT OCW: MIT OpenCourseWare (OCW) is a web-based publication of virtually all MIT course content. OCW is open and available to the world and is a permanent MIT activity.

Latest Tweet

Questions about Electrical, Optical & Magnetic Materials and Devices

Want more info about Electrical, Optical & Magnetic Materials and Devices? Get free advice from education experts and Noodle community members.

  • Answer