Main Profile

At A Glance

Atomistic Computer Modeling of Materials (SMA 5107)

This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and ...

Start Date: Feb 01, 2005
Cost: Free

Contact

Atomistic Computer Modeling of Materials (SMA 5107)'s Full Profile

Overview

Description

This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and transport properties; and coarse-graining approaches and mesoscale models. The course employs case studies from industrial applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of classical force fields, electronic-structure approaches, molecular dynamics, and Monte Carlo.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5107 (Atomistic Computer Modeling of Materials).Support for this course has come from the National Science Foundation's Division of Materials Research (grant DMR-0304019) and from the Singapore-MIT Alliance.

Details

  • Dates: Feb 01, 2005 to May 25, 2005
  • Days of the Week: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
  • Level of Difficulty: Beginner
  • Size: Massive Open Online Course
  • Instructors: Prof. Nicola Marzari, Prof. Gerbrand Ceder
  • Cost: Free
  • Institution: MIT OCW

Provider Overview

About MIT OCW: MIT OpenCourseWare (OCW) is a web-based publication of virtually all MIT course content. OCW is open and available to the world and is a permanent MIT activity.

Latest Tweet

Questions about Atomistic Computer Modeling of Materials (SMA 5107)

Want more info about Atomistic Computer Modeling of Materials (SMA 5107)? Get free advice from education experts and Noodle community members.

  • Answer